Sinter-free phase conversion and scanning transmission electron microscopy of FePt nanoparticle monolayers.
نویسندگان
چکیده
Thermally robust monolayers of 4-6 nm diameter FePt nanoparticles (NPs) were fabricated by combining chemical synthesis and atomic layer deposition. Spin-cast monolayers of FePt NPs were coated with thin, 11 nm-thick layers of amorphous Al(2)O(3), followed by annealing to convert the FePt NPs from an alloy (A1) into intermetallic FePt (L1(0)) and FePt(3) (L1(2)) phases. The Al(2)O(3) layer serves as a barrier that prevents sintering between NPs during annealing at temperatures up to 730 °C. Electron and X-ray diffraction in conjunction with high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) show that as-synthesized A1 FePt NPs convert into L1(0) and L1(2) phase NPs through annealing. HAADF-STEM measurements of individual NPs reveal imperfect ordering and show that the NP composition determines which intermetallic phase is obtained. Mixed-phase NPs with L1(0) cores and FePt(3) L1(2) shells were also observed, as well as a smaller number of unconverted A1 NPs. These results highlight the need for improved control over the compositional uniformity of FePt NPs for their use in bit-patterned magnetic recording.
منابع مشابه
Structure Optimization of FePt Nanoparticles of Various Sizes for Magnetic Data Storage
Surfactant-coated, fcc disordered FePt nanoparticles of three different sizes between 3 and 7 nm were prepared and washed according to a modified reaction route based on Sun et al. Hexane dispersions of nanoparticles were dried on transmission electron microscopy (TEM) grids, and the resulting monolayers were annealed by a sinter-free procedure at 600 C and at 650 C for 2 hours, respectively, d...
متن کاملSynthesis and Morphology of Face Centered Cubic (FCC) Fe-Pt Nanoparticles
FePt nanoparticles with thermally stable room-temperature ferromagnetism are investigated. The monodisperse nanoparticles are prepared by chemical synthesis and a salt-matrix annealing technique. Structural and magnetic characterizations confirm the phase transition from the disordered face-centered cubic structure. In this paper, 3 nm FePt nanoparticles are first synthesized by superhydride re...
متن کاملSynthesis and Morphology of Face Centered Cubic (FCC) Fe-Pt Nanoparticles
FePt nanoparticles with thermally stable room-temperature ferromagnetism are investigated. The monodisperse nanoparticles are prepared by chemical synthesis and a salt-matrix annealing technique. Structural and magnetic characterizations confirm the phase transition from the disordered face-centered cubic structure. In this paper, 3 nm FePt nanoparticles are first synthesized by superhydride re...
متن کاملApplication of Ytterium Iron Garnet as a Powerful and Recyclable Nanocatalyst for the One-pot Synthesis of Octahydroquinazoline Derivatives under Solvent-free Conditions
In this work, preparation and crystallization of yttrium iron garnet Y3Fe5O12 super-paramagnetic nanoparticle by aqueous sol–gel processes and its application as an effective nano catalyst for esterification and etherification reactions in short reaction time and in high isolated yields. Then this catalist was used for the synthesis of Dihydropyrimidin derivatives is described. The catalyst was...
متن کاملEffect of Rare Earth Elements on the Sorption Characteristics of Nanostructured Zr-base Sinter Porous Getter Prepared by Mechanical Alloying
The effect of rare earth (RE) elements, including Ce and La, on the sorption properties of Zr-Co getters was investigated in this work. The phase evolution, microstructural characteristics of getter powders were studied by means of X-ray diffraction method, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The nanostructured Zr3Co intermetallic compound has been...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 3 10 شماره
صفحات -
تاریخ انتشار 2011